On some spectra of shifts

Snežana Č. Živković-Zlatanović
University of Niš
Faculty of Sciences and Mathematics
P.O. Box 224, 18000 Niš, Serbia
e-mail: mladvlad@mts.rs

Abstract

The spectrum, the left (right) spectrum, the approximate point (defect) spectrum and the point spectrum of forward (backward) unilateral shift on $c_{0}, c, \ell_{\infty}, \ell_{p}$, as well as of forward (backward) bilateral shift on $c_{0}(\mathbb{Z})$ and $\ell_{p}(\mathbb{Z}), p \geq 1$, are determined.

1 Introduction

Let \mathbb{C} be the set of all complex numbers and let X be an infinite dimensional complex Banach space. We use $B(X)$ to denote the set of all bounded linear operators on X. This is a Banach algebra. Let I denote the identity operator. The group of all invertible operators is denoted by $B(X)^{-1}$, while the semigroups of left and right invertible operators are denoted by $B(X)_{l}^{-1}$ and $B(X)_{r}^{-1}$, respectively. For $A \in B(X)$ we use $\mathcal{N}(A)$ and $\mathcal{R}(A)$, respectively, to denote the null-space and the range of A.

The spectrum of $A \in B(X)$ is

$$
\begin{equation*}
\sigma(A)=\sigma_{l}(A) \cup \sigma_{r}(A) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma_{l}(A) & =\{\lambda \in \mathbb{C}: A-\lambda I \text { is not left invertible }\} \\
\sigma_{r}(A) & =\{\lambda \in \mathbb{C}: A-\lambda I \text { is not right invertible }\}
\end{aligned}
$$

are the left and the right spectrum of A, respectively.
For $\lambda \in \mathbb{C}$ and $A \in B(X)$ the following implication holds [3, Posledica 5.3.3]:

$$
\begin{equation*}
|\lambda|>\|A\| \Longrightarrow A-\lambda I \in B(X)^{-1} \tag{1.2}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
\sigma(A) \subset\{\lambda \in \mathbb{C}:|\lambda| \leq\|A\|\} \tag{1.3}
\end{equation*}
$$

The point spectrum of A is defined by

$$
\sigma_{p}(A)=\{\lambda \in \mathbb{C}: A-\lambda I \text { is not injective }\} .
$$

The injectivity modulus (minimum modulus) of $A \in B(X)$ is defined as

$$
j(A)=\inf _{\|x\|=1}\|A x\|
$$

We immediately obtain that $\|A x\| \geq j(A)\|x\|$ for every $x \in X$, and

$$
j(A)=\max \{c \geq 0:\|A x\| \geq c\|x\|, \text { for every } x \in X\}
$$

An operator $A \in B(X)$ is bounded below if there exists some $c>0$ such that

$$
c\|x\| \leq\|A x\|, \text { for every } x \in X
$$

It is easy to see that A is bounded below if and only if $j(A)>0$.
Recall that $A \in B(X)$ is bounded below if and only if A is injective and $\mathcal{R}(A)$ is closed (see [3, Teorema 4.7.2]).

The approximate point spectrum of A is defined by

$$
\sigma_{a}(A)=\{\lambda \in \mathbb{C}: A-\lambda I \text { is not bounded below }\}
$$

while the approximate defect spectrum of A is defined by

$$
\sigma_{\delta}(A)=\{\lambda \in \mathbb{C}: A-\lambda I \text { is not surjective }\}
$$

For $K \subset \mathbb{C}, \partial K$ denotes the boundary of K.
For $A \in B(X)$ it is well-known that (see [3, p. 186, 187, Teorema 5.9.13, Posledica 5.9.18])

$$
\begin{align*}
\sigma_{p}(A) \subset \sigma_{a}(A) & \subset \sigma_{l}(A), \tag{1.4}\\
\sigma_{\delta}(A) & \subset \sigma_{r}(A), \tag{1.5}
\end{align*}
$$

as well as,

$$
\begin{equation*}
\partial \sigma(A) \subset \sigma_{a}(A) \cap \sigma_{\delta}(A) \subset \sigma_{l}(A) \cap \sigma_{r}(A) \tag{1.6}
\end{equation*}
$$

The spectra $\sigma_{a}(A), \sigma_{\delta}(A), \sigma_{l}(A), \sigma_{r}(A)$ are always closed and non-empty, while the point spectrum $\sigma_{p}(A)$ can be non-closed and empty.

If $A \in B(X)^{-1}$, then [3, Teorema 5.4.12]

$$
\begin{equation*}
\sigma\left(A^{-1}\right)=\left\{\lambda^{-1}: \lambda \in \sigma(A)\right\} . \tag{1.7}
\end{equation*}
$$

Let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and let $\mathbb{C}^{\mathbb{N}_{0}}$ be the linear space of all complex sequences $x=\left(x_{k}\right)_{k=0}^{+\infty}$. Let ℓ_{∞}, c and c_{0} denote the set of bounded, convergent and null sequences. We write $\ell_{p}=\left\{x \in \mathbb{C}^{\mathbb{N}_{0}}: \sum_{k=0}^{+\infty}\left|x_{k}\right|^{p}<+\infty\right\}$ for $1 \leq p<\infty$. For $n=0,1,2, \ldots$, let $e^{(n)}$ denote the sequences such that $e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0$ for $k \neq n$. The forward and the backward unilateral shifts U and V are linear operators on $\mathbb{C}^{\mathbb{N}_{0}}$ defined by

$$
U e^{(n)}=e^{(n+1)} \quad \text { and } \quad V e^{(n+1)}=e^{(n)}, \quad n=0,1,2, \ldots
$$

Invariant subspaces for U and V include c_{0}, c, ℓ_{∞} and $\ell_{p}, p \geq 1$. Recall that for every $1 \leq p<\infty$,

$$
\begin{equation*}
\ell_{1} \subset \ell_{p} \subset c_{0} \subset c \subset \ell_{\infty}, \tag{1.8}
\end{equation*}
$$

and for each $X \in\left\{c_{0}, c, \ell_{\infty}, \ell_{p}\right\}, U, V \in B(X)$ and $\|U\|=\|V\|=1$. On the Hilbert space ℓ_{2} we also have that $V=U^{*}$, where U^{*} is the Hilbert-adjoint of U.

2 Spectra

We shall write $\mathbb{D}=\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$ and $\mathbb{S}=\{\lambda \in \mathbb{C}:|\lambda|=1\}$.
Theorem 2.1. For each $X \in\left\{c_{0}, c, \ell_{\infty}, \ell_{p}\right\}, p \geq 1$, and the forward and backward unilateral shifts $U, V \in B(X)$ there are equalities

$$
\begin{align*}
& \sigma_{\delta}(U)=\sigma_{r}(U)=\sigma(U)=\mathbb{D} \tag{2.1}\\
& \sigma_{a}(V)=\sigma_{l}(V)=\sigma(V)=\mathbb{D} \tag{2.2}
\end{align*}
$$

Proof. From

$$
\begin{equation*}
\|U\|=\|V\|=1 \tag{2.3}
\end{equation*}
$$

according to (1.3), it follows that

$$
\begin{equation*}
\sigma(U) \cup \sigma(V) \subset \mathbb{D} \tag{2.4}
\end{equation*}
$$

Observe that $V U=I$,

$$
V(I-U V)=0 \neq I-U V
$$

and also

$$
\begin{equation*}
\mathcal{N}(V)=(I-U V) X \neq\{0\} \tag{2.5}
\end{equation*}
$$

From (2.3) and (1.2) it is clear that

$$
\begin{equation*}
|\lambda|<1 \Longrightarrow I-\lambda U \in B(X)^{-1} \tag{2.6}
\end{equation*}
$$

For $|\lambda|<1$, since $V-\lambda=V(I-\lambda U)$, from (2.5) and (2.6) it follows

$$
\begin{equation*}
\mathcal{N}(V-\lambda I)=(V-\lambda)^{-1}(0)=(I-\lambda U)^{-1} V^{-1}(0) \neq\{0\} \tag{2.7}
\end{equation*}
$$

This means that $V-\lambda I$ is not injective for $\lambda \in \mathbb{C},|\lambda|<1$, and hence,

$$
\begin{equation*}
\{\lambda \in \mathbb{C}:|\lambda|<1\} \subset \sigma_{a}(V) \subset \sigma_{l}(V) \subset \sigma(V) \tag{2.8}
\end{equation*}
$$

Since $\sigma_{a}(V)$ is closed, from (2.8) we obtain

$$
\begin{equation*}
\mathbb{D} \subset \sigma_{a}(V) \subset \sigma_{l}(V) \subset \sigma(V) \tag{2.9}
\end{equation*}
$$

It is obvious that $e^{(0)} \notin \mathcal{R}(U)$. Suppose that $\lambda \in \mathbb{C}$ and $0<|\lambda|<1$. We show that $e^{(0)} \notin \mathcal{R}(\lambda I-U)$. If there exists $x=\left(x_{k}\right)_{k=0}^{+\infty}$ such that $(\lambda I-U) x=e^{(0)}$, then

$$
\left(\lambda x_{0}, \lambda x_{1}-x_{0}, \lambda x_{2}-x_{1}, \ldots\right)=(1,0,0, \ldots)
$$

and hence

$$
x=\left(\frac{1}{\lambda}, \frac{1}{\lambda^{2}}, \frac{1}{\lambda^{3}}, \ldots\right)
$$

which is not a bounded sequence and so, it is not in X.
Therefore, $\lambda I-U$ is not surjective for every $\lambda \in \mathbb{C}$ such that $|\lambda|<1$ and hence,

$$
\{\lambda \in \mathbb{C}:|\lambda|<1\} \subset \sigma_{\delta}(U) \subset \sigma_{r}(U) \subset \sigma(U)
$$

As $\sigma_{\delta}(U)$ is closed, from the last inclusion we get

$$
\begin{equation*}
\mathbb{D} \subset \sigma_{\delta}(U) \subset \sigma_{r}(U) \subset \sigma(U) \tag{2.10}
\end{equation*}
$$

From (2.4), (2.9) and (2.10) it follows (2.1) and (2.2).

Theorem 2.2. For each $X \in\left\{c_{0}, c, \ell_{\infty}, \ell_{p}\right\}, p \geq 1$, and the forward and backward unilateral shifts $U, V \in B(X)$ there are equalities

$$
\begin{equation*}
\sigma_{a}(U)=\sigma_{l}(U)=\mathbb{S} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{\delta}(V)=\sigma_{r}(V)=\mathbb{S} \tag{2.12}
\end{equation*}
$$

Proof. For $\lambda \neq 0,|\lambda|<1$, since $|\lambda|^{-1}>1=\|V\|$ it follows that $V-\lambda^{-1} I \in$ $B(X)^{-1}$ by (1.2). As $V U=I$, we have

$$
V(\lambda I-U)=\lambda V-I=\lambda\left(V-\lambda^{-1} I\right)
$$

and consequently, $\lambda I-U \in B(X)_{l}^{-1}$. Since also $U \in B(X)_{l}^{-1}$, for every $\lambda \in \mathbb{C}$ such that $|\lambda|<1$ we have that $\lambda \notin \sigma_{l}(U)$ and since $\sigma_{l}(U) \subset \sigma(U)=\mathbb{D}$ (Theorem 2.1), we conclude that

$$
\begin{equation*}
\sigma_{l}(U) \subset \mathbb{S} \tag{2.13}
\end{equation*}
$$

From (2.1), (1.6) and (1.4) we get

$$
\begin{equation*}
\mathbb{S}=\partial \sigma(U) \subset \sigma_{a}(U) \subset \sigma_{l}(U) \tag{2.14}
\end{equation*}
$$

Now, from (2.13) and (2.14) we obtain that $\sigma_{a}(U)=\sigma_{l}(U)=\mathbb{S}$.
For $\lambda \neq 0,|\lambda|<1$, since $|\lambda|^{-1}>1=\|U\|$, from (1.2) it follows that $\lambda^{-1} I-U \in B(X)^{-1}$ and since $V U=I$, from

$$
V-\lambda I=V-\lambda V U=\lambda V\left(\lambda^{-1} I-U\right)
$$

we conclude that $V-\lambda I$ is right invertible as a product of one invertible and one right invertible operator. As also $V \in B(X)_{r}^{-1}$, we have that $\lambda \notin \sigma_{r}(V)$ for every $\lambda \in \mathbb{C}$ such that $|\lambda|<1$ and since $\sigma_{r}(V) \subset \sigma(V)=\mathbb{D}$, we conclude that

$$
\begin{equation*}
\sigma_{r}(V) \subset \mathbb{S} \tag{2.15}
\end{equation*}
$$

From (2.2) we have that $\partial \sigma(V)=\mathbb{S}$ and from (1.6) and (1.5) it follows that

$$
\begin{equation*}
\mathbb{S} \subset \sigma_{\delta}(V) \subset \sigma_{r}(V) \tag{2.16}
\end{equation*}
$$

Now, (2.15) and (2.16) imply (2.12).

Remark that $\sigma_{p}(U)=\emptyset$. Indeed, U is injective and for $\lambda \neq 0$, from $(U-\lambda I) x=0$ for $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ it follows that $\left(-\lambda x_{0}, x_{0}-\lambda x_{1}, x_{1}-\right.$ $\left.\lambda x_{2}, \ldots\right)=(0,0,0, \ldots)$, that is

$$
-\lambda x_{0}=0, x_{0}-\lambda x_{1}=0, x_{1}-\lambda x_{2}=0, \ldots,
$$

and hence, $x_{0}=0, x_{1}=0, x_{2}=0, \ldots$, i.e. $x=0$.
Let $\lambda \in \mathbb{C}$ such that $|\lambda|<1$. Consider the sequence

$$
x_{\lambda}=\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{n}, \ldots\right) .
$$

From $|\lambda|^{p}<1$, for $1 \leq p<+\infty$, it follows that $\sum_{k=0}^{+\infty}\left|\lambda^{k}\right|^{p}=\sum_{k=0}^{+\infty}\left(|\lambda|^{p}\right)^{k}<$ $+\infty$ and so, $x_{\lambda} \in \ell_{p}$. According to the inclusions (1.8) we have that $x_{\lambda} \in X$ for each $X \in\left\{\ell_{p}, c_{0}, c, \ell_{\infty}\right\}, p \geq 1$.

Since $x_{\lambda} \neq 0$ and

$$
V x_{\lambda}=\left(\lambda, \lambda^{2}, \ldots, \lambda^{n}, \ldots\right)=\lambda\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{n}, \ldots\right)=\lambda x_{\lambda},
$$

we conclude that $V-\lambda I$ is not injective and hence, $\lambda \in \sigma_{p}(V)$. Therefore,

$$
\begin{equation*}
\{\lambda \in \mathbb{C}:|\lambda|<1\} \subset \sigma_{p}(V) . \tag{2.17}
\end{equation*}
$$

Let $\lambda \in \mathbb{C},|\lambda|=1$ and $(V-\lambda) x=0$ for $x=\left(x_{k}\right)_{k=0}^{+\infty} \in X$, where $X \in\left\{\ell_{p}, c_{0}\right\}, p \geq 1$. Then $\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(\lambda x_{0}, \lambda x_{1}, \lambda x_{2}, \ldots\right)$ and so,

$$
x_{1}=\lambda x_{0}, x_{2}=\lambda x_{1}, x_{3}=\lambda x_{2}, \ldots
$$

Therefore, for $n \in \mathbb{N}$ we have

$$
\begin{equation*}
x_{1}=\lambda x_{0}, \quad x_{2}=\lambda x_{1}=\lambda^{2} x_{0}, \quad \ldots \quad, x_{n}=\lambda^{n} x_{0} \tag{2.18}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} x_{n}=0$, it follows that $\lim _{n \rightarrow \infty}\left|x_{n}\right|=0$. As $|\lambda|=1$, from (2.18) it follows that $\left|x_{n}\right|=\left|x_{0}\right|$ for all $n \in \mathbb{N}$ and hence, $\lim _{n \rightarrow \infty}\left|x_{n}\right|=\left|x_{0}\right|$. Therefore, $x_{0}=0$ and so, $x_{i}=0$ for all $i \in \mathbb{N}$, i.e. $x=0$. Consequently, $\lambda \notin \sigma_{p}(V)$, and hence

$$
\begin{equation*}
\mathbb{S} \cap \sigma_{p}(V)=\emptyset \tag{2.19}
\end{equation*}
$$

Since $\sigma_{p}(V) \subset \sigma(V)=\mathbb{D}$, from (2.17) and (2.19) it follows that

$$
\sigma_{p}(V)=\{\lambda \in \mathbb{C}:|\lambda|<1\} .
$$

We remark that $\sigma_{p}(V)$ is not a closed set.
Now we consider the backward shift V on c. For the sequence $e=$ $(1,1, \ldots)$ we have that $e \in c, e \neq 0, V e=e$, and so $1 \in \sigma_{p}(V)$. Let $\lambda \in \mathbb{C},|\lambda|=1, \lambda \neq 1$ and $(V-\lambda) x=0$ for $x=\left(x_{k}\right)_{k=0}^{+\infty} \in c$. According to (2.18) we have that

$$
\begin{equation*}
x=\left(x_{0}, \lambda x_{0}, \lambda^{2} x_{0}, \lambda^{3} x_{0}, \ldots\right)=x_{0}\left(1, \lambda, \lambda^{2}, \lambda^{3}, \ldots\right) \in c . \tag{2.20}
\end{equation*}
$$

Since $|\lambda|=1$ and $\lambda \neq 1$ the sequence $\left(1, \lambda, \lambda^{2}, \lambda^{3}, \ldots\right)$ does not converge and hence from (2.20) it follows that $x_{0}=0$. Consequently, $x=0$ and we get that $V-\lambda$ is an injection for all $\lambda \in \mathbb{C}$ such that $|\lambda|=1$ and $\lambda \neq 1$. Now from (2.17) we conclude that

$$
\sigma_{p}(V)=\{\lambda \in \mathbb{C}:|\lambda|<1\} \cup\{1\} .
$$

We remark again that $\sigma_{p}(V)$ is not closed.
Consider the backward shift V on ℓ_{∞}. Let $\lambda \in \mathbb{C}$ and $|\lambda|=1$. Then $x_{\lambda}=$ $\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{n}, \ldots\right) \in \ell_{\infty}, x_{\lambda} \neq 0$ and $V x_{\lambda}=\lambda x_{\lambda}$ and hence, $\lambda \in \sigma_{p}(V)$. Therefore, $\mathbb{S} \subset \sigma_{p}(V)$, which together with (2.17) gives $\mathbb{D} \subset \sigma_{p}(V) \subset \sigma(V)=$ \mathbb{D}, and so

$$
\sigma_{p}(V)=\mathbb{D} .
$$

Let $\mathbb{C}^{\mathbb{Z}}$ be the linear space of all complex sequences $x=\left(x_{k}\right)_{k=-\infty}^{+\infty}$. Let $c_{0}(\mathbb{Z})$ be the set of all sequences $x=\left(x_{k}\right)_{k=-\infty}^{+\infty}$ such that $\lim _{k \rightarrow \infty} x_{k}=\lim _{k \rightarrow \infty} x_{-k}=$ 0, i.e. $x_{k} \rightarrow 0$ when $|k| \rightarrow \infty$. For $x=\left(x_{k}\right)_{k=-\infty}^{+\infty} \in c_{0}(\mathbb{Z})$ set $\|x\|=\sup _{k}\left|x_{k}\right|$. We write $\ell_{p}(\mathbb{Z})=\left\{x \in \mathbb{C}^{\mathbb{Z}}: \sum_{k=-\infty}^{+\infty}\left|x_{k}\right|^{p}<\infty\right\}$ for $1 \leq p<\infty$, and for $x=\left(x_{k}\right)_{k=-\infty}^{+\infty} \in \ell_{p}(\mathbb{Z}),\|x\|=\left(\sum_{k=-\infty}^{+\infty}\left|x_{k}\right|^{p}\right)^{1 / p}$. Remark that $c_{0}(\mathbb{Z})$ and $\ell_{p}(\mathbb{Z})$ are Banach spaces.

For $k=\ldots,-2,-1,0,1,2, \ldots$, let $\delta^{(k)}$ denote the sequences such that $\delta_{k}^{(k)}=1$ and $\delta_{i}^{(k)}=0$ for $i \neq k$. The forward and the backward bilateral shifts W_{1} and W_{2} are linear operators on $\mathbb{C}^{\mathbb{Z}}$ defined by

$$
W_{1} \delta^{(k)}=\delta^{(k+1)} \quad \text { and } \quad W_{2} \delta^{(k+1)}=\delta^{(k)}, \quad k=\ldots,-2,-1,0,1,2, \ldots
$$

Obviously, $c_{0}(\mathbb{Z})$ and $\ell_{p}(\mathbb{Z}), p \geq 1$ are invariant subspaces for W_{1} and W_{2}, and $W_{1}^{-1}=W_{2}$. For each $X \in\left\{c_{0}(\mathbb{Z}), \ell_{p}(\mathbb{Z})\right\}, W_{1}$ and W_{2} are isometries. On the Hilbert space $\ell_{2}(\mathbb{Z})$ we have that $W_{2}=W_{1}^{*}$, that is W_{1} and W_{2} are unitary.

Theorem 2.3. If X is one of $c_{0}(\mathbb{Z})$ and $\ell_{p}(\mathbb{Z}), p \geq 1$, then for the forward and backward bilateral shifts $W_{1}, W_{2} \in B(X)$ there are equalities

$$
\begin{equation*}
\sigma\left(W_{1}\right)=\sigma\left(W_{2}\right)=\mathbb{S} . \tag{2.21}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
\left\|W_{1}\right\|=\left\|W_{2}\right\|=1 \tag{2.22}
\end{equation*}
$$

from (1.3) it follows that

$$
\begin{equation*}
\sigma\left(W_{1}\right) \cup \sigma\left(W_{2}\right) \subset \mathbb{D} . \tag{2.23}
\end{equation*}
$$

Let $\lambda \in \mathbb{C}$ such that $0<|\lambda|<1$. Then $1 /|\lambda|>1=\left\|W_{2}\right\|$ and from (1.3) it follows that $1 / \lambda \notin \sigma\left(W_{2}\right)=\sigma\left(W_{1}^{-1}\right)$ and hence $\lambda \notin \sigma\left(W_{1}\right)$ according to (1.7). From (2.23) it follows that

$$
\sigma\left(W_{1}\right) \subset \mathbb{S} .
$$

Suppose that $\lambda \in \mathbb{C},|\lambda|=1$. We prove that $\mathcal{R}\left(\lambda I-W_{1}\right)$ does not contain $\delta^{(0)}$. For $x=\left(x_{k}\right)_{k=-\infty}^{+\infty} \in X$, from $\left(\lambda I-W_{1}\right) x=\delta^{(0)}$ we get

$$
\ldots, \lambda x_{-2}-x_{-3}=0, \lambda x_{-1}-x_{-2}=0, \lambda x_{0}-x_{-1}=1, \lambda x_{1}-x_{0}=0, \lambda x_{2}-x_{1}=0, \ldots,
$$

and hence

$$
\begin{gathered}
x_{1}=\frac{1}{\lambda} x_{0}, x_{2}=\frac{1}{\lambda^{2}} x_{0}, x_{3}=\frac{1}{\lambda^{3}} x_{0}, \ldots \\
x_{-2}=\lambda x_{-1}, x_{-3}=\lambda^{2} x_{-1}, \ldots
\end{gathered}
$$

From $\lim _{k \rightarrow \infty} x_{k}=0, \lim _{k \rightarrow \infty} x_{-k}=0$ and $|\lambda|=1$ we conclude that $x_{0}=0$ and $x_{-1}=0$ which contradict the fact that $\lambda x_{0}-x_{-1}=1$.

Consequently, $\sigma\left(W_{1}\right)=\mathbb{S}$, and hence also

$$
\sigma\left(W_{2}\right)=\sigma\left(W_{1}^{-1}\right)=\left\{\lambda^{-1}: \lambda \in \sigma\left(W_{1}\right)\right\}=\mathbb{S} .
$$

From (2.23), (1.6), (1.4), (1.5) and (1.1) it follows that

$$
\sigma_{a}\left(W_{i}\right)=\sigma_{\delta}\left(W_{i}\right)=\sigma_{l}\left(W_{i}\right)=\sigma_{r}\left(W_{i}\right)=\mathbb{S}, \quad i=1,2 .
$$

We shall prove that $\sigma_{p}\left(W_{1}\right)=\sigma_{p}\left(W_{2}\right)=\emptyset$.

Let $\lambda \in \mathbb{C},|\lambda|=1$ and $\left(\lambda I-W_{1}\right) x=0$ for $x=\left(x_{k}\right)_{k=-\infty}^{+\infty} \in X, X \in$ $\left\{c_{0}(\mathbb{Z}), \ell_{p}(\mathbb{Z})\right\}, p \geq 1$. Then

$$
\ldots, \lambda x_{-2}-x_{-3}=0, \lambda x_{-1}-x_{-2}=0, \lambda x_{0}-x_{-1}=0, \lambda x_{1}-x_{0}=0, \lambda x_{2}-x_{1}=0, \ldots .
$$

Therefore, for $n \in \mathbb{N}$ we have

$$
\begin{equation*}
x_{1}=\lambda^{-1} x_{0}=\bar{\lambda} x_{0}, x_{2}=\bar{\lambda} x_{1}=\bar{\lambda}^{2} x_{0}, \quad \ldots \quad, x_{n}=\bar{\lambda}^{n} x_{0}, \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{-1}=\lambda x_{0}, x_{-2}=\lambda x_{-1}=\lambda^{2} x_{0}, \quad \ldots \quad, x_{-n}=\lambda^{n} x_{0} . \tag{2.25}
\end{equation*}
$$

As $\lim _{n \rightarrow \infty} x_{n}=0$, we have $\lim _{n \rightarrow \infty}\left|x_{n}\right|=0$. From (2.24), since $|\bar{\lambda}|=1$, it follows that $\left|x_{n}\right|=\left|x_{0}\right|$ for all $n \in \mathbb{N}$ and hence, $\lim _{n \rightarrow \infty}\left|x_{n}\right|=\left|x_{0}\right|$. Therefore, $x_{0}=0$ (the same conclusion can be obtained from (2.25) and the fact that $\lim _{n \rightarrow \infty} x_{-n}=0$) and so $x_{i}=0$ for all $i \in \mathbb{Z}$, i.e. $x=0$. Consequently, $\lambda \notin$ $\sigma_{p}\left(W_{1}\right)$, and hence $\mathbb{S} \cap \sigma_{p}\left(W_{1}\right)=\emptyset$. From (2.21) it follows that $\sigma_{p}\left(W_{1}\right)=\emptyset$.

The equality $\sigma_{p}\left(W_{2}\right)=\emptyset$ can be proved similarly.
Since the spectrum of every compact operator is mostly countable, we conclude that the operators $U, V \in B(X)$ for each $X \in\left\{c_{0}, c, \ell_{\infty}, \ell_{p}\right\}, p \geq 1$, are not compact. Also $W_{1}, W_{2} \in B(X)$ for each $X \in\left\{c_{0}(\mathbb{Z}), \ell_{p}(\mathbb{Z})\right\}, p \geq 1$, are not compact.

For more about shifts we refer the reader to [1] and [2].

References

[1] S. Kurepa, Funkcionalna analiza, elementi teorije operatora, Školska knjiga, Zagreb, 1981.
[2] K. B. Laursen and M. Neumann, An Introduction to Local Spectral Theory, Oxford University Press, 2000.
[3] V. Rakočević, Funkcionalna analiza, Naučna knjiga, Beograd, 1994.

