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Abstract

The spectrum, the left (right) spectrum, the approximate point (de-
fect) spectrum and the point spectrum of forward (backward) unilat-
eral shift on c0, c, ℓ∞, ℓp, as well as of forward (backward) bilateral
shift on c0(Z) and ℓp(Z), p ≥ 1, are determined.

1 Introduction

Let C be the set of all complex numbers and let X be an infinite dimensional
complex Banach space. We use B(X) to denote the set of all bounded linear
operators on X. This is a Banach algebra. Let I denote the identity oper-
ator. The group of all invertible operators is denoted by B(X)−1, while the
semigroups of left and right invertible operators are denoted by B(X)−1

l and
B(X)−1

r , respectively. For A ∈ B(X) we use N (A) and R(A), respectively,
to denote the null-space and the range of A.

The spectrum of A ∈ B(X) is

σ(A) = σl(A) ∪ σr(A), (1.1)

where

σl(A) = {λ ∈ C : A− λI is not left invertible},
σr(A) = {λ ∈ C : A− λI is not right invertible}



are the left and the right spectrum of A, respectively.
For λ ∈ C and A ∈ B(X) the following implication holds [3, Posledica

5.3.3]:
|λ| > ∥A∥ =⇒ A− λI ∈ B(X)−1, (1.2)

and hence,
σ(A) ⊂ {λ ∈ C : |λ| ≤ ∥A∥}. (1.3)

The point spectrum of A is defined by

σp(A) = {λ ∈ C : A− λI is not injective}.

The injectivity modulus (minimum modulus) of A ∈ B(X) is defined as

j(A) = inf
∥x∥=1

∥Ax∥.

We immediately obtain that ∥Ax∥ ≥ j(A)∥x∥ for every x ∈ X, and

j(A) = max{c ≥ 0 : ∥Ax∥ ≥ c∥x∥, for every x ∈ X}.

An operator A ∈ B(X) is bounded below if there exists some c > 0 such that

c∥x∥ ≤ ∥Ax∥, for every x ∈ X.

It is easy to see that A is bounded below if and only if j(A) > 0.
Recall that A ∈ B(X) is bounded below if and only if A is injective and

R(A) is closed (see [3, Teorema 4.7.2]).
The approximate point spectrum of A is defined by

σa(A) = {λ ∈ C : A− λI is not bounded below},

while the approximate defect spectrum of A is defined by

σδ(A) = {λ ∈ C : A− λI is not surjective}.

For K ⊂ C, ∂K denotes the boundary of K.
For A ∈ B(X) it is well-known that (see [3, p. 186, 187, Teorema 5.9.13,

Posledica 5.9.18])

σp(A) ⊂ σa(A) ⊂ σl(A), (1.4)

σδ(A) ⊂ σr(A), (1.5)
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as well as,

∂σ(A) ⊂ σa(A) ∩ σδ(A) ⊂ σl(A) ∩ σr(A). (1.6)

The spectra σa(A), σδ(A), σl(A), σr(A) are always closed and non-empty,
while the point spectrum σp(A) can be non-closed and empty.

If A ∈ B(X)−1, then [3, Teorema 5.4.12]

σ(A−1) = {λ−1 : λ ∈ σ(A)}. (1.7)

Let N0 = N∪{0} and let CN0 be the linear space of all complex sequences
x = (xk)

+∞
k=0. Let ℓ∞, c and c0 denote the set of bounded, convergent and null

sequences. We write ℓp = {x ∈ CN0 :
∑+∞

k=0 |xk|p < +∞} for 1 ≤ p < ∞. For

n = 0, 1, 2, . . . , let e(n) denote the sequences such that e
(n)
n = 1 and e

(n)
k = 0

for k ̸= n. The forward and the backward unilateral shifts U and V are linear
operators on CN0 defined by

Ue(n) = e(n+1) and V e(n+1) = e(n), n = 0, 1, 2, . . . .

Invariant subspaces for U and V include c0, c, ℓ∞ and ℓp, p ≥ 1. Recall that
for every 1 ≤ p < ∞,

ℓ1 ⊂ ℓp ⊂ c0 ⊂ c ⊂ ℓ∞, (1.8)

and for each X ∈ {c0, c, ℓ∞, ℓp}, U, V ∈ B(X) and ∥U∥ = ∥V ∥ = 1. On the
Hilbert space ℓ2 we also have that V = U∗, where U∗ is the Hilbert-adjoint
of U .

2 Spectra

We shall write D = {λ ∈ C : |λ| ≤ 1} and S = {λ ∈ C : |λ| = 1}.

Theorem 2.1. For each X ∈ {c0, c, ℓ∞, ℓp}, p ≥ 1, and the forward and
backward unilateral shifts U , V ∈ B(X) there are equalities

σδ(U) = σr(U) = σ(U) = D, (2.1)

σa(V ) = σl(V ) = σ(V ) = D. (2.2)
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Proof. From
∥U∥ = ∥V ∥ = 1, (2.3)

according to (1.3), it follows that

σ(U) ∪ σ(V ) ⊂ D. (2.4)

Observe that V U = I,

V (I − UV ) = 0 ̸= I − UV,

and also
N (V ) = (I − UV )X ̸= {0}. (2.5)

From (2.3) and (1.2) it is clear that

|λ| < 1 =⇒ I − λU ∈ B(X)−1. (2.6)

For |λ| < 1, since V − λ = V (I − λU), from (2.5) and (2.6) it follows

N (V − λI) = (V − λ)−1(0) = (I − λU)−1V −1(0) ̸= {0}. (2.7)

This means that V − λI is not injective for λ ∈ C, |λ| < 1, and hence,

{λ ∈ C : |λ| < 1} ⊂ σa(V ) ⊂ σl(V ) ⊂ σ(V ). (2.8)

Since σa(V ) is closed, from (2.8) we obtain

D ⊂ σa(V ) ⊂ σl(V ) ⊂ σ(V ). (2.9)

It is obvious that e(0) /∈ R(U). Suppose that λ ∈ C and 0 < |λ| < 1. We show
that e(0) /∈ R(λI−U). If there exists x = (xk)

+∞
k=0 such that (λI−U)x = e(0),

then
(λx0, λx1 − x0, λx2 − x1, . . . ) = (1, 0, 0, . . . )

and hence

x = (
1

λ
,
1

λ2
,
1

λ3
, . . . ),

which is not a bounded sequence and so, it is not in X.
Therefore, λI −U is not surjective for every λ ∈ C such that |λ| < 1 and

hence,
{λ ∈ C : |λ| < 1} ⊂ σδ(U) ⊂ σr(U) ⊂ σ(U).

As σδ(U) is closed, from the last inclusion we get

D ⊂ σδ(U) ⊂ σr(U) ⊂ σ(U). (2.10)

From (2.4), (2.9) and (2.10) it follows (2.1) and (2.2).
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Theorem 2.2. For each X ∈ {c0, c, ℓ∞, ℓp}, p ≥ 1, and the forward and
backward unilateral shifts U , V ∈ B(X) there are equalities

σa(U) = σl(U) = S, (2.11)

and
σδ(V ) = σr(V ) = S. (2.12)

Proof. For λ ̸= 0, |λ| < 1, since |λ|−1 > 1 = ∥V ∥ it follows that V − λ−1I ∈
B(X)−1 by (1.2). As V U = I, we have

V (λI − U) = λV − I = λ(V − λ−1I),

and consequently, λI − U ∈ B(X)−1
l . Since also U ∈ B(X)−1

l , for every
λ ∈ C such that |λ| < 1 we have that λ /∈ σl(U) and since σl(U) ⊂ σ(U) = D
(Theorem 2.1), we conclude that

σl(U) ⊂ S. (2.13)

From (2.1), (1.6) and (1.4) we get

S = ∂σ(U) ⊂ σa(U) ⊂ σl(U). (2.14)

Now, from (2.13) and (2.14) we obtain that σa(U) = σl(U) = S.
For λ ̸= 0, |λ| < 1, since |λ|−1 > 1 = ∥U∥, from (1.2) it follows that

λ−1I − U ∈ B(X)−1 and since V U = I, from

V − λI = V − λV U = λV (λ−1I − U)

we conclude that V −λI is right invertible as a product of one invertible and
one right invertible operator. As also V ∈ B(X)−1

r , we have that λ /∈ σr(V )
for every λ ∈ C such that |λ| < 1 and since σr(V ) ⊂ σ(V ) = D, we conclude
that

σr(V ) ⊂ S. (2.15)

From (2.2) we have that ∂σ(V ) = S and from (1.6) and (1.5) it follows that

S ⊂ σδ(V ) ⊂ σr(V ). (2.16)

Now, (2.15) and (2.16) imply (2.12).
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Remark that σp(U) = ∅. Indeed, U is injective and for λ ̸= 0, from
(U − λI)x = 0 for x = (x0, x1, x2, . . . ) it follows that (−λx0, x0 − λx1, x1 −
λx2, . . . ) = (0, 0, 0, . . . ), that is

−λx0 = 0, x0 − λx1 = 0, x1 − λx2 = 0, . . . ,

and hence, x0 = 0, x1 = 0, x2 = 0, . . . , i.e. x = 0.
Let λ ∈ C such that |λ| < 1. Consider the sequence

xλ = (1, λ, λ2, . . . , λn, . . . ).

From |λ|p < 1, for 1 ≤ p < +∞, it follows that
∑+∞

k=0 |λk|p =
∑+∞

k=0(|λ|p)k <
+∞ and so, xλ ∈ ℓp. According to the inclusions (1.8) we have that xλ ∈ X
for each X ∈ {ℓp, c0, c, ℓ∞}, p ≥ 1.

Since xλ ̸= 0 and

V xλ = (λ, λ2, . . . , λn, . . . ) = λ(1, λ, λ2, . . . , λn, . . . ) = λxλ,

we conclude that V − λI is not injective and hence, λ ∈ σp(V ). Therefore,

{λ ∈ C : |λ| < 1} ⊂ σp(V ). (2.17)

Let λ ∈ C, |λ| = 1 and (V − λ)x = 0 for x = (xk)
+∞
k=0 ∈ X, where

X ∈ {ℓp, c0}, p ≥ 1. Then (x1, x2, x3, . . . ) = (λx0, λx1, λx2, . . . ) and so,

x1 = λx0, x2 = λx1, x3 = λx2, . . . .

Therefore, for n ∈ N we have

x1 = λx0, x2 = λx1 = λ2x0, . . . , xn = λnx0. (2.18)

Since lim
n→∞

xn = 0, it follows that lim
n→∞

|xn| = 0. As |λ| = 1, from (2.18) it

follows that |xn| = |x0| for all n ∈ N and hence, lim
n→∞

|xn| = |x0|. Therefore,
x0 = 0 and so, xi = 0 for all i ∈ N, i.e. x = 0. Consequently, λ /∈ σp(V ), and
hence

S ∩ σp(V ) = ∅. (2.19)

Since σp(V ) ⊂ σ(V ) = D, from (2.17) and (2.19) it follows that

σp(V ) = {λ ∈ C : |λ| < 1}.
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We remark that σp(V ) is not a closed set.
Now we consider the backward shift V on c. For the sequence e =

(1, 1, . . . ) we have that e ∈ c, e ̸= 0, V e = e, and so 1 ∈ σp(V ). Let
λ ∈ C, |λ| = 1, λ ̸= 1 and (V − λ)x = 0 for x = (xk)

+∞
k=0 ∈ c. According to

(2.18) we have that

x = (x0, λx0, λ
2x0, λ

3x0, . . . ) = x0(1, λ, λ
2, λ3, . . . ) ∈ c. (2.20)

Since |λ| = 1 and λ ̸= 1 the sequence (1, λ, λ2, λ3, . . . ) does not converge and
hence from (2.20) it follows that x0 = 0. Consequently, x = 0 and we get
that V − λ is an injection for all λ ∈ C such that |λ| = 1 and λ ̸= 1. Now
from (2.17) we conclude that

σp(V ) = {λ ∈ C : |λ| < 1} ∪ {1}.

We remark again that σp(V ) is not closed.
Consider the backward shift V on ℓ∞. Let λ ∈ C and |λ| = 1. Then xλ =

(1, λ, λ2, . . . , λn, . . . ) ∈ ℓ∞, xλ ̸= 0 and V xλ = λxλ and hence, λ ∈ σp(V ).
Therefore, S ⊂ σp(V ), which together with (2.17) gives D ⊂ σp(V ) ⊂ σ(V ) =
D, and so

σp(V ) = D.

Let CZ be the linear space of all complex sequences x = (xk)
+∞
k=−∞. Let

c0(Z) be the set of all sequences x = (xk)
+∞
k=−∞ such that lim

k→∞
xk = lim

k→∞
x−k =

0, i.e. xk → 0 when |k| → ∞. For x = (xk)
+∞
k=−∞ ∈ c0(Z) set ∥x∥ = sup

k
|xk|.

We write ℓp(Z) = {x ∈ CZ :
∑+∞

k=−∞ |xk|p < ∞} for 1 ≤ p < ∞, and for

x = (xk)
+∞
k=−∞ ∈ ℓp(Z), ∥x∥ =

(∑+∞
k=−∞ |xk|p

)1/p
. Remark that c0(Z) and

ℓp(Z) are Banach spaces.
For k = . . . ,−2,−1, 0, 1, 2, . . . , let δ(k) denote the sequences such that

δ
(k)
k = 1 and δ

(k)
i = 0 for i ̸= k. The forward and the backward bilateral

shifts W1 and W2 are linear operators on CZ defined by

W1δ
(k) = δ(k+1) and W2δ

(k+1) = δ(k), k = . . . ,−2,−1, 0, 1, 2, . . . .

Obviously, c0(Z) and ℓp(Z), p ≥ 1 are invariant subspaces for W1 and W2,
and W−1

1 = W2. For each X ∈ {c0(Z), ℓp(Z)}, W1 and W2 are isometries.
On the Hilbert space ℓ2(Z) we have that W2 = W ∗

1 , that is W1 and W2 are
unitary.
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Theorem 2.3. If X is one of c0(Z) and ℓp(Z), p ≥ 1, then for the forward
and backward bilateral shifts W1, W2 ∈ B(X) there are equalities

σ(W1) = σ(W2) = S. (2.21)

Proof. Since

∥W1∥ = ∥W2∥ = 1, (2.22)

from (1.3) it follows that

σ(W1) ∪ σ(W2) ⊂ D. (2.23)

Let λ ∈ C such that 0 < |λ| < 1. Then 1/|λ| > 1 = ∥W2∥ and from (1.3)
it follows that 1/λ /∈ σ(W2) = σ(W−1

1 ) and hence λ /∈ σ(W1) according to
(1.7). From (2.23) it follows that

σ(W1) ⊂ S.

Suppose that λ ∈ C, |λ| = 1. We prove that R(λI −W1) does not contain
δ(0). For x = (xk)

+∞
k=−∞ ∈ X, from (λI −W1)x = δ(0) we get

. . . , λx−2−x−3=0, λx−1−x−2=0, λx0−x−1=1, λx1−x0=0, λx2−x1=0, ...,

and hence

x1 =
1
λ
x0, x2 =

1
λ2x0, x3 =

1
λ3x0, . . .

x−2 = λx−1, x−3 = λ2x−1, . . . .

From lim
k→∞

xk = 0, lim
k→∞

x−k = 0 and |λ| = 1 we conclude that x0 = 0 and

x−1 = 0 which contradict the fact that λx0−x−1=1.
Consequently, σ(W1) = S, and hence also

σ(W2) = σ(W−1
1 ) = {λ−1 : λ ∈ σ(W1)} = S.

From (2.23), (1.6), (1.4), (1.5) and (1.1) it follows that

σa(Wi) = σδ(Wi) = σl(Wi) = σr(Wi) = S, i = 1, 2.

We shall prove that σp(W1) = σp(W2) = ∅.
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Let λ ∈ C, |λ| = 1 and (λI − W1)x = 0 for x = (xk)
+∞
k=−∞ ∈ X, X ∈

{c0(Z), ℓp(Z)}, p ≥ 1. Then

. . . , λx−2−x−3=0, λx−1−x−2=0, λx0−x−1=0, λx1−x0=0, λx2−x1=0, ... .

Therefore, for n ∈ N we have

x1 = λ−1x0 = λx0, x2 = λx1 = λ
2
x0, . . . , xn = λ

n
x0, (2.24)

and
x−1 = λx0, x−2 = λx−1 = λ2x0, . . . , x−n = λnx0. (2.25)

As lim
n→∞

xn = 0, we have lim
n→∞

|xn| = 0. From (2.24), since |λ| = 1, it

follows that |xn| = |x0| for all n ∈ N and hence, lim
n→∞

|xn| = |x0|. Therefore,
x0 = 0 (the same conclusion can be obtained from (2.25) and the fact that
lim
n→∞

x−n = 0) and so xi = 0 for all i ∈ Z, i.e. x = 0. Consequently, λ /∈
σp(W1), and hence S ∩ σp(W1) = ∅. From (2.21) it follows that σp(W1) = ∅.

The equality σp(W2) = ∅ can be proved similarly.
Since the spectrum of every compact operator is mostly countable, we

conclude that the operators U, V ∈ B(X) for each X ∈ {c0, c, ℓ∞, ℓp}, p ≥ 1,
are not compact. Also W1,W2 ∈ B(X) for each X ∈ {c0(Z), ℓp(Z)}, p ≥ 1,
are not compact.

For more about shifts we refer the reader to [1] and [2].
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